Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37445461

RESUMO

Since its first introduction, levodopa has become the cornerstone for the treatment of Parkinson's disease and remains the leading therapeutic choice for motor control therapy so far. Unfortunately, the subsequent appearance of abnormal involuntary movements, known as dyskinesias, is a frequent drawback. Despite the deep knowledge of this complication, in terms of clinical phenomenology and the temporal relationship during a levodopa regimen, less is clear about the pathophysiological mechanisms underpinning it. As the disease progresses, specific oscillatory activities of both motor cortical and basal ganglia neurons and variation in levodopa metabolism, in terms of the dopamine receptor stimulation pattern and turnover rate, underlie dyskinesia onset. This review aims to provide a global overview on levodopa-induced dyskinesias, focusing on pathophysiology, clinical manifestations, therapy management strategies and future directions.

2.
Neuromodulation ; 26(8): 1724-1732, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36774326

RESUMO

BACKGROUND: Directional deep brain stimulation (DBS) leads allow a fine-tuning control of the stimulation field, however, this new technology could increase the DBS programming time because of the higher number of the possible combinations used in directional DBS than in standard nondirectional electrodes. Neuroimaging leads localization techniques and local field potentials (LFPs) recorded from DBS electrodes implanted in basal ganglia are among the most studied biomarkers for DBS programing. OBJECTIVE: This study aimed to evaluate whether intraoperative LFPs beta power and neuroimaging reconstructions correlate with contact selection in clinical programming of DBS in patients with Parkinson disease (PD). MATERIALS AND METHODS: In this retrospective study, routine intraoperative LFPs recorded from all contacts in the subthalamic nucleus (STN) of 14 patients with PD were analyzed to calculate the beta band power for each contact. Neuroimaging reconstruction obtained through Brainlab Elements Planning software detected contacts localized within the STN. Clinical DBS programming contact scheme data were collected after one year from the implant. Statistical analysis evaluated the diagnostic performance of LFPs beta band power and neuroimaging data for identification of the contacts selected with clinical programming. We evaluated whether the most effective contacts identified based on the clinical response after one year from implant were also those with the highest level of beta activity and localized within the STN in neuroimaging reconstruction. RESULTS: LFPs beta power showed a sensitivity of 67%, a negative predictive value (NPV) of 84%, a diagnostic odds ratio (DOR) of 2.7 in predicting the most effective contacts as evaluated through the clinical response. Neuroimaging reconstructions showed a sensitivity of 62%, a NPV of 77%, a DOR of 1.20 for contact effectivity prediction. The combined use of the two methods showed a sensitivity of 87%, a NPV of 87%, a DOR of 2.7 for predicting the clinically more effective contacts. CONCLUSIONS: The combined use of LFPs beta power and neuroimaging localization and segmentations predict which are the most effective contacts as selected on the basis of clinical programming after one year from implant of DBS. The use of predictors in contact selection could guide clinical programming and reduce time needed for it.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/cirurgia , Estudos Retrospectivos , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgia , Núcleo Subtalâmico/fisiologia , Neuroimagem
3.
J Clin Med ; 12(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835985

RESUMO

INTRODUCTION: The present study explores brain connectivity in Parkinson's disease (PD) and in age matched healthy controls (HC), using quantitative EEG analysis, at rest and during a motor tasks. We also evaluated the diagnostic performance of the phase locking value (PLV), a measure of functional connectivity, in differentiating PD patients from HCs. METHODS: High-density, 64-channels, EEG data from 26 PD patients and 13 HC were analyzed. EEG signals were recorded at rest and during a motor task. Phase locking value (PLV), as a measure of functional connectivity, was evaluated for each group in a resting state and during a motor task for the following frequency bands: (i) delta: 2-4 Hz; (ii) theta: 5-7 Hz; (iii) alpha: 8-12 Hz; beta: 13-29 Hz; and gamma: 30-60 Hz. The diagnostic performance in PD vs. HC discrimination was evaluated. RESULTS: Results showed no significant differences in PLV connectivity between the two groups during the resting state, but a higher PLV connectivity in the delta band during the motor task, in HC compared to PD. Comparing the resting state versus the motor task for each group, only HCs showed a higher PLV connectivity in the delta band during motor task. A ROC curve analysis for HC vs. PD discrimination, showed an area under the ROC curve (AUC) of 0.75, a sensitivity of 100%, and a negative predictive value (NPV) of 100%. CONCLUSIONS: The present study evaluated the brain connectivity through quantitative EEG analysis in Parkinson's disease versus healthy controls, showing a higher PLV connectivity in the delta band during the motor task, in HC compared to PD. This neurophysiology biomarkers showed the potentiality to be explored in future studies as a potential screening biomarker for PD patients.

4.
Sensors (Basel) ; 22(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36433372

RESUMO

Introduction: Gait features differ between Parkinson's disease (PD) and healthy subjects (HS). Kinematic alterations of gait include reduced gait speed, swing time, and stride length between PD patients and HS. Stride time and swing time variability are increased in PD patients with respect to HS. Additionally, dynamic parameters of asymmetry of gait are significantly different among the two groups. The aim of the present study is to evaluate which kind of gait analysis (dynamic or kinematic) is more informative to discriminate PD and HS gait features. Methods: In the present study, we analyzed gait dynamic and kinematic features of 108 PD patients and 88 HS from four cohorts of two datasets. Results: Kinematic features showed statistically significant differences among PD patients and HS for gait speed and time Up and Go test and for selected kinematic dispersion indices (standard deviation and interquartile range of swing, stance, and double support time). Dynamic features did not show any statistically significant difference between PD patients and HS. Discussion: Despite kinematics features like acceleration being directly proportional to dynamic features like ground reaction force, the results of this study showed the so-called force/rhythm dichotomy since kinematic features were more informative than dynamic ones.


Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Humanos , Fenômenos Biomecânicos , Doença de Parkinson/diagnóstico , Equilíbrio Postural , Estudos de Tempo e Movimento , Marcha , Biomarcadores
5.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366187

RESUMO

Quantitative indoor monitoring, in a low-invasive and accurate way, is still an unmet need in clinical practice. Indoor environments are more challenging than outdoor environments, and are where patients experience difficulty in performing activities of daily living (ADLs). In line with the recent trends of telemedicine, there is an ongoing positive impulse in moving medical assistance and management from hospitals to home settings. Different technologies have been proposed for indoor monitoring over the past decades, with different degrees of invasiveness, complexity, and capabilities in full-body monitoring. The major classes of devices proposed are inertial-based sensors (IMU), vision-based devices, and geomagnetic and radiofrequency (RF) based sensors. In recent years, among all available technologies, there has been an increasing interest in using RF-based technology because it can provide a more accurate and reliable method of tracking patients' movements compared to other methods, such as camera-based systems or wearable sensors. Indeed, RF technology compared to the other two techniques has higher compliance, low energy consumption, does not need to be worn, is less susceptible to noise, is not affected by lighting or other physical obstacles, has a high temporal resolution without a limited angle of view, and fewer privacy issues. The aim of the present narrative review was to describe the potential applications of RF-based indoor monitoring techniques and highlight their differences compared to other monitoring technologies.


Assuntos
Análise da Marcha , Telemedicina , Humanos , Tremor , Atividades Cotidianas , Polissonografia , Sinais Vitais
6.
Ann Med ; 54(1): 2658-2671, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36154386

RESUMO

Reperfusion therapy administration timing in acute ischaemic stroke is the main determinant of patients' mortality and long-term disability. Indeed, the first hour from the stroke onset is defined the "golden hour", in which the treatment has the highest efficacy and lowest side effects. Delayed ambulance transport, inappropriate triage and difficulty in accessing CT scans lead to delayed onset to treatment time (OTT) in clinical practice. To date brain CT scan is needed to rule out intracranial haemorrhage, which is a major contraindication to thrombolytic therapy. The availability, dimension and portability make CT suitable mainly for intrahospital use, determining further delays in the therapies administration. This review aims at evaluating portable neurophysiology technologies developed with the scope of speeding up the diagnostic phase of acute stroke and, therefore, the initiation of intravenous thrombolysis. Medline databases were explored for studies concerning near infrared spectroscopy (NIRS), bioelectrical impedance spectroscopy (BIS) and Microwave imaging (MWI) as methods for stroke diagnosis. A total of 1368 articles were found, and 12 of these fit with our criteria and were included in the review. For each technology, the following parameters were evaluated: diagnostic accuracy, ability to differentiate ischaemic and haemorrhagic stroke, diagnosis time from stroke onset, portability and technology readiness level (TRL). All the described methods seem to be able to identify acute stroke even though the number of studies is very limited. Low cost and portability make them potentially usable during ambulance transport, possibly leading to a reduction of stroke OTT along with the related huge benefits in terms of patients outcome and health care costs. In addition, unlike standard imaging techniques, neurophysiological techniques could allow continuous monitoring of patients for timely intrahospital stroke diagnosis.KEY MESSAGESFirst hour from the stroke onset is defined the "golden hour", in which the treatment has the highest efficacy and lowest side effects.The delay for stroke onset to brain imaging time is one of the major reasons why only a minority of patients with acute ischaemic stroke are eligible to reperfusion therapies.Neurophysiology techniques (NIRS, BIS and MWI) could have a potential high impact in reducing the time to treatment in stroke patients.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/diagnóstico por imagem , Impedância Elétrica , Fibrinolíticos/uso terapêutico , Humanos , Micro-Ondas , Neurofisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/diagnóstico por imagem , Resultado do Tratamento
7.
J Clin Med ; 11(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887948

RESUMO

Dystonia diagnosis is based on clinical examination performed by a neurologist with expertise in movement disorders. Clues that indicate the diagnosis of a movement disorder such as dystonia are dystonic movements, dystonic postures, and three additional physical signs (mirror dystonia, overflow dystonia, and geste antagonists/sensory tricks). Despite advances in research, there is no diagnostic test with a high level of accuracy for the dystonia diagnosis. Clinical neurophysiology and genetics might support the clinician in the diagnostic process. Neurophysiology played a role in untangling dystonia pathophysiology, demonstrating characteristic reduction in inhibition of central motor circuits and alterations in the somatosensory system. The neurophysiologic measure with the greatest evidence in identifying patients affected by dystonia is the somatosensory temporal discrimination threshold (STDT). Other parameters need further confirmations and more solid evidence to be considered as support for the dystonia diagnosis. Genetic testing should be guided by characteristics such as age at onset, body distribution, associated features, and coexistence of other movement disorders (parkinsonism, myoclonus, and other hyperkinesia). The aim of the present review is to summarize the state of the art regarding dystonia diagnosis focusing on the role of neurophysiology and genetic testing.

8.
Life (Basel) ; 12(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35207493

RESUMO

Dystonia is a hyperkinetic movement disorder characterized by abnormal movement or posture caused by excessive muscle contraction. Because of its wide clinical spectrum, dystonia is often underdiagnosed or misdiagnosed. In clinical practice, dystonia could often present in association with other movement disorders. An accurate physical examination is essential to describe the correct phenomenology. To help clinicians reaching the proper diagnosis, several classifications of dystonia have been proposed. The current classification consists of axis I, clinical characteristics, and axis II, etiology. Through the application of this classification system, movement disorder specialists could attempt to correctly characterize dystonia and guide patients to the most effective treatment. The aim of this article is to describe the phenomenological spectrum of dystonia, the last approved dystonia classification, and new emerging knowledge.

9.
Expert Rev Neurother ; 21(12): 1371-1388, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736368

RESUMO

INTRODUCTION: Motor complication management is one of the main unmet needs in Parkinson's disease patients. AREAS COVERED: Among the most promising emerging approaches for handling motor complications in Parkinson's disease, adaptive deep brain stimulation strategies operating in closed-loop have emerged as pivotal to deliver sustained, near-to-physiological inputs to dysfunctional basal ganglia-cortical circuits over time. Existing sensing systems that can provide feedback signals to close the loop include biochemical-, neurophysiological- or wearable-sensors. Biochemical sensing allows to directly monitor the pharmacokinetic and pharmacodynamic of antiparkinsonian drugs and metabolites. Neurophysiological sensing relies on neurotechnologies to sense cortical or subcortical brain activity and extract real-time correlates of symptom intensity or symptom control during DBS. A more direct representation of the symptom state, particularly the phenomenological differentiation and quantification of motor symptoms, can be realized via wearable sensor technology. EXPERT OPINION: Biochemical, neurophysiologic, and wearable-based biomarkers are promising technological tools that either individually or in combination could guide adaptive therapy for Parkinson's disease motor symptoms in the future.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Gânglios da Base , Humanos , Doença de Parkinson/tratamento farmacológico
10.
Neurol Res Int ; 2021: 8438498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34258062

RESUMO

Chronic pain is one of the leading causes of disability and disease burden worldwide, accounting for a prevalence between 6.9% and 10% in the general population. Pharmacotherapy alone results ineffective in about 70-60% of patients in terms of a satisfactory degree of pain relief. Focused ultrasound is a promising tool for chronic pain management, being approved for thalamotomy in chronic neuropathic pain and for bone metastases-related pain treatment. FUS is a noninvasive technique for neuromodulation and for tissue ablation that can be applied to several tissues. Transcranial FUS (tFUS) can lead to opposite biological effects, depending on stimulation parameters: from reversible neural activity facilitation or suppression (low-intensity, low-frequency ultrasound, LILFUS) to irreversible tissue ablation (high-intensity focused ultrasounds, HIFU). HIFU is approved for thalamotomy in neuropathic pain at the central nervous system level and for the treatment of facet joint osteoarthritis at the peripheral level. Potential applications include HIFU at the spinal cord level for selected cases of refractory chronic neuropathic pain, knee osteoarthritis, sacroiliac joint disease, intervertebral disc nucleolysis, phantom limb, and ablation of peripheral nerves. FUS at nonablative dosage, LILFUS, has potential reversible and tissue-selective effects. FUS applications at nonablative doses currently are at a research stage. The main potential applications include targeted drug and gene delivery through the Blood-Brain Barrier, assessment of pain thresholds and study of pain, and reversible peripheral nerve conduction block. The aim of the present review is to describe the approved and potential applications of the focused ultrasound technology in the field of chronic pain management.

11.
Sensors (Basel) ; 20(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580330

RESUMO

The aim of this review is to summarize that most relevant technologies used to evaluate gait features and the associated algorithms that have shown promise to aid diagnosis and symptom monitoring in Parkinson's disease (PD) patients. We searched PubMed for studies published between 1 January 2005, and 30 August 2019 on gait analysis in PD. We selected studies that have either used technologies to distinguish PD patients from healthy subjects or stratified PD patients according to motor status or disease stages. Only those studies that reported at least 80% sensitivity and specificity were included. Gait analysis algorithms used for diagnosis showed a balanced accuracy range of 83.5-100%, sensitivity of 83.3-100% and specificity of 82-100%. For motor status discrimination the gait analysis algorithms showed a balanced accuracy range of 90.8-100%, sensitivity of 92.5-100% and specificity of 88-100%. Despite a large number of studies on the topic of objective gait analysis in PD, only a limited number of studies reported algorithms that were accurate enough deemed to be useful for diagnosis and symptoms monitoring. In addition, none of the reported algorithms and technologies has been validated in large scale, independent studies.


Assuntos
Análise da Marcha , Doença de Parkinson , Algoritmos , Marcha , Humanos , Doença de Parkinson/diagnóstico , Sensibilidade e Especificidade
12.
Clin Neurol Neurosurg ; 184: 105451, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31336360

RESUMO

OBJECTIVES: Balance impairment is very common in multiple sclerosis (MS) but its causes are still unclear. Some studies suggest that balance deficit originates mainly from damage in specific locations of the central nervous system such as cerebellum and spinal cord, that are involved in transmission and integration of sensory inputs and motor outputs. The aim of this study is to investigate the contribution of spinal cord to MS-related imbalance, by combining neurophysiologic and neuroimaging techniques. PATIENTS AND METHODS: Balance performance was correlated with clinical, neurophysiological and MRI findings. The functionality of spinal cord was tested by somatosensory (SEP) and motor (MEP) evoked potentials. MRI was used to identify spinal and cerebellar lesions. Balance performance was assessed by Tinetti Scale (TS). Clinical disability was measured by EDSS. RESULTS: 38 patients were included. Linear regression model revealed significant negative correlations between TS and EDSS scores, between TS and cervical lesions, and between TS and SEP findings. CONCLUSION: Our study, by combining neurophysiologic and neuroimaging techniques, confirms that spinal cord plays an important role for balance control and that its dysfunction, especially in lower limbs somatosensory ascending pathways conveying proprioceptive information, contributes to balance impairment in MS patients.


Assuntos
Potencial Evocado Motor/fisiologia , Esclerose Múltipla/patologia , Doenças da Medula Espinal/complicações , Medula Espinal/fisiopatologia , Adulto , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/fisiopatologia , Esclerose Múltipla/fisiopatologia , Neuroimagem/métodos , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...